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Abstract 
Ψ -spaces were first introduced by J. R. Isbell and were also discussed by L. 
Gillman and M. Jerison in their famous book Rings of Continuous 
Functions [ ]3 [ ]5 . S. P. Franklin used Ψ -space to give an example of a 
compact, Hausdorff, sequential, non Fréchet-Urysohn space [ ]4 . Here we make 
use of the Ψ -space to construct a space which is not homeomorphic to the 
sequential fan (in fact not homeomorphic to any one of the six examples [ ), 
though it is a countable, Fréchet-Urysohn space with unique limit point. 
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Throughout, N denotes the set of natural numbers and Q denotes the set of rational numbers. 
 
 
Fréchet-Urysohn: 
A topological space X is called a Fréchet-Urysohn space if for every subset A of X and 
every Ax∈ , there exists a sequence ( )nx  of points of A converging to x.  
 
Note that every first-countable space is Fréchet-Urysohn; there are many examples showing 
that converse is not true. One such example is known as the sequential fan. 
 
Sequential fan: 
Consider countably many disjoint copies of a convergent sequence (i.e. copies of 

{ }0Nn/
n
1

∪
⎭
⎬
⎫

⎩
⎨
⎧ ∈ as subsets of the real line) and identify the limit points, denote this new 

identified point by 0 and the resulting space by the set F. New space F is called sequential 
fan [ . ]1
 
The sequential fan has following properties: 
1. Countable 
2. Not first countable 
3. Fréchet-Urysohn 
 
Diagonal Sequence Condition: 
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Peter J. Nyikos stated the following condition [ ]2 . Here we shall refer to it as the diagonal 
sequence condition. Thus a topological space X is said to satisfy the diagonal sequence 
condition if x∈X and  (  for each positive integer m is a sequence converging to x, it is 

possible to choose a sequence  of distinct positive integers and a sequence 

of positive integers in such a way that the diagonal sequence  

)∞=1n
m
nx

( )( )∞=1kkm

( )( )∞=1kkj ( )
( )( )∞

=1k
km

kjx  converges to 
x. 
 
One can check easily that every metric space and more generally every first-countable space 
satisfies the diagonal sequence condition. Also note that sequential fan does not satisfy the 
diagonal sequence condition. 
 
Almost disjoint sets: 
Two sets A and B are said to be almost disjoint if their intersection is finite. 
 
Pairwise almost disjoint family: 
A pairwise almost disjoint family (abbr. as p. a. d. family) on a set X is a collection of 
infinite subsets of X such that  is finite for any two distinct members A, B in . For 
example, partition of N is a p. a. d. family on N.  

F
B∩A F

 
A maximal p. a. d. family (abbr. as MAD family) on a set X is a p. a. d. family on X properly 
contained in no p. a. d. family on X. For example, { }EO,=F , where O is the set of odd 
numbers and E is the set of even numbers, is a maximal p. a. d. family on N.  
 
Ψ -space: 
Let   be a p. a. d. family of infinite subsets of N. Let F { }F∈F/Fω  be a new set of distinct 
points and define =Ψ { }F∈F/∪N Fω  with the following topology: each subset of N is open; 
while   containing Ψ⊂U Fω  is open if and only if U contains all but finitely many points of 
F. 
 
Easy application of Zorn’s lemma shows that every such  is contained in a maximal p. a. d. 
family of infinite subsets of N. The spaces 

F
Ψ  for such maximal p. a. d. families were first 

introduced by J. R. Isbell and considered in[ ]3 . They appeared in [ ]4  to provide an example 
of a compact, Hausdorff, sequential, non Fréchet-Urysohn space. 
 
Frank Siwiec gave six examples which are countable spaces with exactly one nonisolated 
point[ . Three of them are metrizable. Fourth one is the sequential fan and the other two 
contains a copy of sequential fan. These are nonhomeomorphic. Here we construct an 
example using -space having exactly one nonisolated point which contains no copy of 
sequential fan and hence it cannot be homeomorphic to sequential fan or two spaces like 
sequential fan. 

]1

Ψ

  
For our convenience, we shall take Q the set of rational numbers and p. a. d. family on Q. 
 
Example: 
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Let { }F∈F/∪Q= FωΨ , and let  Ψ~  be the quotient space of Ψ  by identifying all Fω  

to one point, sayω . Our aim is to find a particular p. a. d. family F  on Q such that  Ψ~  and 
sequential fan are not homeomorphic. We construct  in the following way. F

Consider the unit interval [ ]1,0=I in R with usual topology. For every [ ]0,1∈r , we can 
choose rational sequences ( )r

nx  and ( )r
ny  such that { }1,2,3,...n/xA r

nr ==  and  
{ }1,2,3,...n/yB r

nr ==  are disjoint and both sequences converge to r. Set 
 which is uncountable p. a. d. family on Q. Then there 

exists a maximal p. a. d. family 
[ ]{ } [ ]{ 0,1r/B0,1r/A rr ∈∪∈=G }

M  on Q such that MG⊂ . Let [ ]{ }0,1∈r/B= r\MF . Now 
we show that under this family  the quotient spaceF Ψ~  is not homeomorphic to sequential 
fan. Suppose Ψ~  contains a copy of sequential fan. Then there exists  (say) in  such that 
we have a sequence 

1F F

( )1
nx  of points of  which converges to some  in1F 1r [ ]1,0 . Similarly, there 

exists  (say) in  such that we have a sequence  2F F ( )2
nx  of points of   which converges to 

some  in 
2F

2r [ ]1,0 . Continuing in this way, we get, because of compactness of [ ]1,0 , a sequence 

 in ( )nr [ ]1,0  which will converge to some  in 0r [ ]1,0 . Now we can choose a point  in kz ( )k
nx  

for each k such that we have a diagonal sequence ( )kz  in Ψ~  with ,=A∩G
00 rr φ  

,=B∩G
00 rr φ  and ,  are finite for all rr A∩G

0 r0r
B∩G [ ]0,1∈r , where 

{ }1,2,3,...=k/z=G kr0
. Then  F∈

0r
G and clearly ( )kz  converges to . Thus we get a 

diagonal sequence converging to
0r

ω , a contradiction to the fact that no diagonal sequence 
converges in a sequential fan. Thus  Ψ~  does not contain a copy of sequential fan, hence Ψ~  
and sequential fan are not homeomorphic.                                                                                                       
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