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Abstract

The rings considered in this article are commutative with identity and which admit at

least one nonzero proper ideal. For a ring R, we denote by I(R), the set of all proper ideals

of R and let I(R)∗ = I(R)\{(0)}. In this article, for any ring R, we associate an undirected

simple graph, denoted by H(R), whose vertex set is I(R)∗ and distinct vertices I, J are

joined by an edge in this graph if and only if IJ 6= (0). For a ring R, we determine necessary

and sufficient conditions in order that H(R) is connected and also find its diameter when it

is connected. We prove that girth(H(R)) is either equal to 3 or ∞. Moreover, we classify

the rings R for which girth(H(R)) = 3. Furthermore, we determine necessary and sufficient

conditions in order that H(R) is complemented.
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1 Introduction

The rings considered in this article are commutative with identity 1 6= 0. The idea of associ-

ating a graph with a ring R and studying the interplay between the ring theoretic properties

of R and the graph theoretic properties of a graph associated with it was initiated by I. Beck

in [10]. Subsequently, a lot of research activity has been carried out by several researchers in

this area (see, for example, [3, 4, 5, 6, 8, 17, 18, 20]). The study of intersection graph of ideals

of a ring has begun with the work of Chakrabarthy, Ghosh, Mukherjee, and Sen [13]. Let R be a
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ring with identity which is not necessarily commutative and which admits at least one nonzero

proper left ideal. Recall from [13] that the intersection graph of ideals of R, denoted by G(R),

is an undirected simple graph whose vertex set is the set of all nonzero proper left ideals of R

and two distinct vertices I, J are joined by an edge in this graph if and only if I ∩ J 6= (0).

The intersection graph of ideals of a ring was studied by seveal researchers (see, for example [1,

15, 19]). Let R be a commutative ring with identity which is not a field. Let G(R) denote the

intersection graph of ideals of R. Motivated by the works presented in [1, 13, 15, 19] on G(R),

in this article, we associate an undirected simple graph with R, denoted by H(R), whose vertex

set is the set of all nonzero proper ideals of R and two distinct vertices I, J are joined by an

edge in H(R) if and only if IJ 6= (0). Note that for any ideals I, J of a ring R, IJ ⊆ I ∩ J .

Thus IJ 6= (0) implies that I ∩ J 6= (0). Moreover, observe that the vertex set of G(R) = the

vertex set of H(R). Hence, it is clear that H(R) is a spanning subgraph of G(R). The purpose

of this article is to study the influence of some graph theoretic parameters of H(R) on the ring

structure of R and vice-versa.

The graphs considered in this article are undirected. Let G = (V,E) be a graph. Let

a, b ∈ V , a 6= b. Recall that the distance between a and b, denoted by d(a, b), is defined as the

length of a shortest path between a and b in G if such a path exists; otherwise, d(a, b) = ∞.

We define d(a, a) = 0. G is said to be connected, if for any distinct a, b ∈ V , there exists a path

in G between a and b. The diameter of a connected graph G = (V,E), denoted by diam(G), is

defined as diam(G) = sup{d(a, b)|a, b ∈ V }.

Let G = (V,E) be a graph such that G contains a cycle. Recall from [9, p.159] that the

girth of G, denoted by girth(G), is equal to the length of a shortest cycle in G. If a graph G

does not contain any cycle, then we define girth(G) =∞.

Let G = (V,E) be a graph. Recall from [5, 17] that two distinct vertices u, v of G are said

to be orthogonal, written u ⊥ v, if u and v are adjacent in G and there is no vertex w of G

which is adjacent to both u and v in G; that is, the edge u − v is not the edge of any triangle

in G. A vertex v of G is said to be a complement of u if u ⊥ v [5]. Moreover, recall from

[5] that G is complemented if each vertex of G admits a complement in G. Furthermore, G is

said to be uniquely complemented, if G is complemented and whenever the vertices u, v, w of

G are such that u ⊥ v and u ⊥ w, then a vertex x of G is adjacent to v in G if and only if x

is adjacent to w in G. Let Γ(R) denote the zero-divisor graph of a ring R. In Section 3 of [5],

D.F. Anderson, R. Levy and J. Shapiro determined rings R for which the zero-divisor graphs

are complemented or uniquely complemented. In this article, we characterize rings R such that

H(R) is complemented.
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Let I be an ideal of a ring R. Recall from [14] that a prime ideal P of R is said to be an

associated prime of I in the sense of Bourbaki, if P = (I :R x) for some x ∈ R. In this case, we

say that P is a B-prime of I in R. A ring R is said to be quasilocal if R has a unique maximal

ideal. A Noetherian quasilocal ring is referred to as a local ring.

Let R be a ring. Recall that an element a ∈ R is said to be nilpotent if an = 0 for some

n ≥ 1. It is well-known that the set of all nilpotent elements of R forms an ideal and is called the

nilradical of R. We denote the nilradical of R by nil(R). R is said to be reduced if nil(R) = (0).

Observe that for ideals I, J of a reduced ring R, I ∩ J 6= (0) if and only if IJ 6= (0). Hence for

any reduced ring R, H(R) = G(R). Whenever a set A is a subset of a set B and A 6= B, we

denote it symbolically using the notation A ⊂ B. For a set A, we denote the cardinality of A

using the notation |A|. We denote the set of all zero-divisors of a ring R by Z(R).

In Section 2, we prove some properties of H(R), where R is a ring which admits a maximal

ideal M such that M is not a B-prime of (0) in R. In Section 3, we consider rings R such

that R is quasilocal. Let M denote the unique maximal ideal of R. With the assumption that

H(R) contains at least two vertices, we determine in Proposition 3.1 necessary and sufficient

conditions in order that H(R) is connected. If R is not an integral domain and if H(R) is

connected, then it is verified in Remark 3.2 that diam(H(R)) = 2. If the unique maximal ideal

M of R is not a B-prime of (0) in R, then it is observed in Proposition 3.3 that no vertex of

H(R) admits a complement in H(R) and moreover, girth(H(R)) = 3. In Proposition 3.4, we

describe the properties of H(R) under the assumption that the unique maximal ideal M of R

is a B-prime of (0) in R.

In Section 4, we consider rings R such that R has exactly two maximal ideals. Let {M1,M2}

denote the set of all maximal ideals of R. In Proposition 4.4, we determine necessary and

sufficient conditions in order that H(R) is connected. Under the assumption that H(R) is

connected, Proposition 4.5 describes diam(H(R)). In Theorem 4.12, we classify rings R such

that H(R) is complemented. Moreover, in Theorem 4.13, we determine necessary and sufficient

conditions in order that H(R) contains a cycle.

In Section 5, we consider rings R such that R has more than two maximal ideals and

investigate the properties of H(R). In Section 6 of this article, we give a brief description of

the results that are proved in Sections 3, 4, and 5 of this article.
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2 Some basic results

In this section, we state and prove some basic results that are needed for proving some results

of this article. We make use of some ideas that are used in the proofs of results from [21].

Lemma 2.1. Let M be a maximal ideal of a ring R such that M is not a B-prime of (0) in R.

Then M 6⊆ ((0) :R I) for any nonzero ideal I of R.

Proof. Suppose that M ⊆ ((0) :R I) for some nonzero ideal I of R. Let a ∈ I\{0}. Note

that M ⊆ ((0) :R a). As ((0) :R a) 6= R and M is a maximal ideal of R, it follows that

M = ((0) :R a). This is in contradiction to the assumption that M is not a B-prime of (0) in

R. Therefore, we obtain the desired conclusion. �

Lemma 2.2. Let M be a maximal ideal of a ring R such that M is not a B-prime of (0) in R.

Then H(R) is connected and moreover, diam(H(R)) ≤ 2.

Proof. Let I, J be distinct vertices of H(R). If IJ 6= (0), then there is an edge of H(R) joining

I and J . Suppose that IJ = (0). Since M is not a B-prime of (0) in R, it follows from Lemma

2.1 that IM 6= (0) and JM 6= (0). Hence I −M − J is a path of length 2 in H(R) between I

and J . This proves that H(R) is connected and diam(H(R)) ≤ 2. �

Lemma 2.3. Let M be a maximal ideal of a ring R such that M is not a B-prime of (0) in R.

Then any edge of H(R) is an edge of a triangle in H(R).

Proof. Let I − J be any edge of H(R). Since M is not a B-prime of (0) in R and IJ 6= (0),

we obtain from Lemma 2.1 that IJM 6= (0). Hence IM 6= (0) and JM 6= (0). We consider the

following cases:

Case(i) M /∈ {I, J}

In this case, it is clear that I − J −M − I is a cycle of length 3 in H(R).

Case(ii) M ∈ {I, J}

Without loss of generality, we may assume that M = I. Since JM 6= (0) and M 6⊆ J , we

obtain that M 6⊆ ((0) :R JM) ∪ J . Hence there exists m ∈ M\J such that MJm 6= (0). If

M 6= Rm, then M − J − Rm −M is a cycle of length 3 in H(R). Suppose that M = Rm.

We assert that m /∈ Z(R). For if m ∈ Z(R), then there exists y ∈ R\{0} such that my = 0.

This implies that M = ((0) :R y) is a B-prime of (0) in R. This is a contradiction. Therefore,

m /∈ Z(R). As m is not a unit in R and m /∈ Z(R), it follows that Rmi 6= Rmj for all distinct

i, j ∈ N. Hence there exists k ∈ N such that Rmk /∈ {M,J}. Observe that M − J −Rmk −M
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is a cycle of length 3 in H(R).

This completes the proof of Lemma 2.3. �

Corollary 2.4. Let M be a maximal ideal of a ring R such that M is not a B-prime of (0) in

R. Then no vertex of H(R) admits a complement in H(R).

Proof. We know from Lemma 2.3 that any edge of H(R) is an edge of a triangle in H(R) and

so no vertex of H(R) admits a complement in H(R). �

Proposition 2.5. Let M be a maximal ideal of a ring R such that M is not a B-prime of (0)

in R. Then girth(H(R)) = 3.

Proof. We first show that H(R) admits at least one edge. Since R is not a field, it follows that

M 6= (0). Let m ∈ M,m 6= 0. As M is not a B-prime of (0) in R, we obtain that Mm 6= (0).

If M 6= Rm, then M − Rm is an edge of H(R). If M = Rm, then it is noted in the proof of

Case(ii) of Lemma 2.3 that m /∈ Z(R). In such a case, Rmi 6= Rmj and moreover, Rmi −Rmj

is an edge of H(R) for all distinct i, j ∈ N. This shows that H(R) admits at least one edge.

Therefore, we obtain from Lemma 2.3 that girth(H(R)) = 3. �

3 R is quasilocal

Let R be a quasilocal ring with M as its unique maximal ideal. The aim of this section is

to prove some results on H(R) regarding its connectedness, its girth, and determination of its

vertices which admit a complement.

Proposition 3.1. Let R be a quasilocal ring with M as its unique maximal ideal such that

H(R) has at least two vertices. Then H(R) is connected if and only if M is not a B-prime of

(0) in R.

Proof. Assume that H(R) is connected. Suppose that M is a B-prime of (0) in R. Hence

there exists x ∈ R\{0} such that M = ((0) :R x). Since M 6= (0), it follows that x ∈ M . Let

A be any proper ideal of R. As A ⊆ M , we obtain that Ax = (0). Since we are assuming that

H(R) has at least two vertices, there exists a nonzero proper ideal I of R such that I 6= Rx. It

is clear from the above given arguments that there exists no path in H(R) between I and Rx.

This is a contradiction and so M is not a B-prime of (0) in R.

Conversely, assume that M is not a B-prime of (0) in R. Then it follows from Lemma 2.2

that H(R) is connected. �
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Let R be a quasilocal ring with M as its unique maximal ideal. In Remark 3.2, we provide

information on diam(H(R)), in the case when H(R) is connected,

Remark 3.2. If H(R) is connected for a quasilocal ring R, then diam(H(R)) = 2 if and only

if R is not an integral domain.

Proof. Let T be any integral domain which is not a field. Then T has an infinite number of

nonzero proper ideals. Moreover, H(T ) = G(T ), and for any nonzero ideals I, J of T , IJ 6= (0).

Therefore, diam(H(T )) = 1.

Let M be the unique maximal ideal of R. Assume that R is not an integral domain and H(R)

is connected. Then we know from Proposition 3.1 that M is not a B-prime of (0) in R. Moreover,

it follows from Lemma 2.2 that diam(H(R)) ≤ 2. We next verify that diam(H(R)) ≥ 2. Since

R is not an integral domain, there exist a, b ∈ R\{0} such that ab = 0. If Ra 6= Rb, then from

ab = 0, we obtain that Ra and Rb are not adjacent in H(R). Suppose that Ra = Rb. Then

a2 = 0. As M is not a B-prime of (0) in R, it follows that Ma 6= (0). Let I = Ma and J = Ra.

From a2 = 0, we get that IJ = (0). We assert that I 6= J . For if I = J , then a ∈ I and so

a = ma for some m ∈ M . Hence (1 −m)a = 0 and as 1 −m is a unit in R, we obtain that

a = 0. This is a contradiction and so I 6= J . Note that I and J are not adjacent in H(R). This

shows that diam(H(R)) ≥ 2 and so diam(H(R)) = 2. �

Proposition 3.3. Let R be a quasilocal ring such that the unique maximal ideal M of R is

not a B-prime of (0) in R. Then the following hold:

(i) No vertex of H(R) admits a complement in H(R).

(ii) girth(H(R)) = 3.

Proof. (i) This is an immediate consequence of Corollary 2.4.

(ii) This follows immediately from Proposition 2.5. �

Let T be a ring. Recall from [11] that an ideal I of T is said to be an annihilating ideal if

there exists t ∈ T\{0} such that It = (0). As in [11], we denote the set of all annihilating ideals

of T by A(T ) and we denote the set of all nonzero annihilating ideals of T by A(T )∗. Recall from

[11] that the annihilating ideal graph of T , denoted by AG(T ), is an undirected simple graph

whose vertex set is A(T )∗ and distinct vertices I, J are joined by an edge in this graph if and

only if IJ = (0). The interplay between the ring theoretic properties of T and graph theoretic

properties of its annihilating ideal graph AG(T ) is well investigated in [11,12]. Let G = (V,E)

be an undirected simple graph. Recall from [9, Definition 1.1.13] that the complement of G,
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denoted by Gc is a graph whose vertex set is V and distinct vertices u, v are joined by an edge

in Gc if and only if there is no edge joining u and v in G.

Let R be a quasilocal ring with M as its unique maximal ideal. Suppose that M is a B-prime

of (0) in R. That is, there exists x ∈ R\{0} such that M = ((0) :R x). As each proper ideal

of R is contained in M , it follows that the set of all nonzero proper ideals of R equals A(R)∗.

Moreover, observe that H(R) = (AG(R))c. Hence Proposition 3.4 ifollows immediately from

[21,, Lemma 3.3].

Proposition 3.4. Let R be a quasilocal ring with M as its unique maximal ideal. If M is a

B-prime of (0) in R, then the following hold:

(i) H(R) is not complemented.

(ii) If a nonzero proper ideal A of R admits a complement in H(R), then so does M .

(iii) If M admits a complement in H(R), then M must be principal. Moreover, M is nilpotent

if ∩∞n=1M
n = (0) and the least positive integer n such that Mn = (0) is at least 4.

(v) If M is not principal, then each edge of H(R) is an edge of a triangle in H(R) and so no

vertex of H(R) admits a complement in H(R).

(v) If M is not principal and if H(R) contains at least one edge, then H(R) is a union of

triangles and so girth(H(R)) = 3.

We conclude this section with some examples to illustrate the results proved in this section.

Example 3.6. The example to be presented here is from [16, Exercises 6 and 7, pp. 62-63]. Let

S = K[X,Y ] be the polynomial ring in two variables X,Y over a field K. Let M = SX+SY and

let T = SM . Note that T is a local domain with MT as its unique maximal ideal. Moreover, T is

a unique factorization domain admitting an infinite number of nonassociate prime elements. Let

W = ⊕(T/Tp) be the direct sum of the T -modules T/Tp, where p varies over all nonassociate

prime elements of T . Let R = T ⊕ W be the ring obtained on using Nagata’s principle of

idealization. It is not hard to show that R is quasilocal with MT ⊕W as its unique maximal

ideal. It was verified in [22, Example 2.8] that MT ⊕W is not a B-prime of the zero ideal in

R. Indeed, it was observed in [2, Example 2.6] that for any nonassociate prime elements p, q of

T , there is no nonzero element of R which annihilates both (p, 0) and (q, 0) in R. We obtain

from Proposition 3.1 that H(R) is connected and as R is not an integral domain, it follows from

Remark 3.2 that diam(H(R)) = 2. Moreover, we obtain from Proposition 3.3 that no vertex of

H(R) admits a complement in H(R) and girth(H(R)) = 3. �

Example 3.7. Let S = K[X,Y ] be the polynomial ring in two variables X,Y over a field K.
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Let I = SX2 + SY 2. Let R = S/I. Let N = SX + SY . Note that R is local with M = N/I as

its unique maximal ideal. Moreover, M = ((0 + I) :R XY + I) is a B-prime of the zero ideal in

R. Observe that A = R(X +I) and B = R(Y +I) are distinct vertices of H(R) and as XY /∈ I,

there is an edge of H(R) joining A and B. From Proposition 3.1, we obtain that H(R) is not

connected. Since M is not principal, we obtain from Proposition 3.4(iv) and (v) that no vertex

of H(R) admits a complement in H(R) and moreover, girth(H(R)) = 3. �

4 R has exactly two maximal ideals

In this section, we consider rings R such that R has exactly two maximal ideals and study some

graph theoretic properties of H(R). Let {M1,M2} denote the set of all maximal ideals of R.

In Lemma 4.2, we describe H(R) under the assumption that M1 ∩M2 = (0). We classify in

Theorem 4.12 rings R such that H(R) is complemented and in Theorem 4.13, we determine

necessary and sufficient conditions in order that H(R) contains a cycle. The proof of many

results of this section follow closely the proof of results presented in Section 4 of [21].

Lemma 4.1. Let F1, F2 be fields and T = F1×F2 . Then H(T ) is a graph on two vertices and

has no edges.

Proof. Note that {(0)×F2, F1× (0)} is the set of all nonzero proper ideals of T and moreover,

((0)× F2)(F1 × (0)) = (0)× (0). Hence we obtain the required conclusion. �

Lemma 4.2. Let R be a ring with exactly two maximal ideals and let them be M1 and M2. If

M1 ∩M2 = (0), then H(R) is a graph on two vertices and has no edges.

Proof. Observe that M1 + M2 = R. As M1 ∩M2 = (0), it follows from the Chinese remainder

theorem [7, Proposition 1.10(ii) and (iii)] that the mapping f : R → R/M1 × R/M2 defined

by f(r) = (r + M1, r + M2) is an isomorphism of rings. Let Fi = R/Mi for each i ∈ {1, 2}.

Note that Fi is a field for each i ∈ {1, 2} and since R ∼= F1×F2 as rings, the desired conclusion

follows from Lemma 4.1. �

In Propositon 4.4, we determine when H(R) is connected and we make use of Lemma 4.3

in its proof.

Lemma 4.3. Let R be a ring with exactly two maximal ideals and let them be M1 and M2. If

M1 ∩M2 6= (0), then there exist a ∈M1\M2 and b ∈M2\M1 such that a+ b is a unit in R and

ab 6= 0.
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Proof. First note that for any a ∈ M1\M2 and b ∈ M2\M1, a + b /∈ M1 ∪M2 = the set of

all nonunits in R. Hence a + b is a unit in R. Observe that M1 + M2 = R. Hence there exist

x ∈ M1 and y ∈ M2 such that x + y = 1. It is clear that x /∈ M2 and y /∈ M1. If xy 6= 0,

then the elements a = x and b = y yield the desired conclusion. Suppose that xy = 0. Let

z ∈ M1 ∩M2, z 6= 0. Then from z = xz + yz, it follows that either xz 6= 0 or yz 6= 0. Suppose

that xz 6= 0. Let a = x and b = y+z. It is clear that a ∈M1\M2, b ∈M2\M1, and ab = xz 6= 0.

Moreover, a + b is a unit in R. If xz = 0, then yz 6= 0. In such a case, the elements a = x + z

and b = y satisfy our requirement. �

Proposition 4.4. Let {M1,M2} denote the set of all maximal ideals of a ring R. Then H(R)

is connected if and only if M1 ∩M2 6= (0).

Proof. Assume that H(R) is connected. Then it follows from Lemma 4.2 that M1 ∩M2 6= (0).

Conversely, assume that M1∩M2 6= (0). Let I, J be distinct nonzero proper ideals of R. We

assert that there exists a path of length at most three in H(R) between I and J . If IJ 6= (0),

then I − J is an edge of H(R). Hence we may assume that IJ = (0). We know from Lemma

4.3 that there exist elements a ∈ M1\M2, b ∈ M2\M1 such that ab 6= 0. Since a + b is a unit

in R, it follows that for any nonzero ideal A of R, either Aa 6= (0) or Ab 6= (0). Suppose that

there exists x ∈ {a, b} such that Ix 6= (0) and Jx 6= (0). Then I − Rx − J is a path of length

2 in H(R) between I and J . It may happen that there exists no x ∈ {a, b} such that Ix 6= (0)

and Jx 6= (0). We may assume without loss of generality that Ia 6= (0), Ib = (0), Ja = (0),

and Jb 6= (0). In such a case, as ab 6= 0, it follows that I −Ra−Rb− J is a path of length 3 in

H(R) between I and J . This proves that H(R) is connected. �

Let R,M1,M2 be as in the statement of Proposition 4.4. With the assumption that H(R)

is connected, in Proposition 4.5, we determine diam(H(R)).

Proposition 4.5. Let {M1,M2} denote the set of all maximal ideals of a ring R. Suppose

that R is not an integral domain. If H(R) is connected, then 2 ≤ diam(H(R)) ≤ 3. Moreover,

diam(H(R)) = 3 if and only if both M1 and M2 are B-primes of (0) in R.

Proof. Assume that H(R) is connected. Then M1 ∩M2 6= (0) and it is shown in the proof

of Proposition 4.4, that for any distinct vertices I, J of H(R), there exists a path of length at

most 3 in H(R) between I and J . This shows that diam(H(R)) ≤ 3. We next show that there

exist nonzero proper ideals A,B of R such that A and B are not adjacent in H(R), that is

AB = (0). As we are assuming that R is not an integral domain, there exist x, y ∈ R\{0} such
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that xy = 0. If Rx 6= Ry, then the ideals A = Rx and B = Ry are distinct vertices of H(R) and

AB = (0). Suppose that Rx = Ry. Then x2 = 0. We know from Lemma 4.3 that there exist

a ∈M1\M2 and b ∈M2\M1 such that ab 6= 0. As a + b is a unit in R, either ax 6= 0 or bx 6= 0.

Without loss of generality, we may assume that ax 6= 0. If abx = 0, then A = Rax, B = Rb are

distinct vertices of H(R) and AB = (0). Suppose that abx 6= 0. Let A = Rabx and B = Rx.

It follows from x2 = 0 that AB = (0). We claim that A 6= B. For if A = B, then x = rabx for

some r ∈ R. This implies that (1− rab)x = 0. Since ab ∈M1 ∩M2, 1− rab /∈M1 ∪M2. Hence

1− rab is a unit in R and so it follows from (1− rab)x = 0 that x = 0. This is a contradiction

and therefore, Rabx 6= Rx. This shows that diam(H(R)) ≥ 2. Thus 2 ≤ diam(H(R)) ≤ 3.

Suppose that either M1 or M2 is not a B-prime of (0) in R. Then it follows from Lemma 2.2

that diam(H(R)) ≤ 2 and so diam(H(R)) = 2. Suppose that both M1 and M2 are B-primes

of (0) in R. Hence there exist a1, a2 ∈ R\{0} such that Mi = ((0) :R ai) for each i ∈ {1, 2}. It

is clear that Ra1 6= Ra2 and we know from [10, Lemma 3.6] that a1a2 = 0. Thus Ra1 and Ra2

are not adjacent in H(R). Let A be any proper nonzero ideal of R. Then either Aa1 = (0) or

Aa2 = (0). Hence there exists no vertex A of H(R) which is adjacent to both Ra1 and Ra2 in

H(R). This proves that d(Ra1, Ra2) ≥ 3 in H(R) and therefore, diam(H(R)) = 3. �

Remark 4.6. Let R,M1,M2 be as in the statement of Proposition 4.4. We proceed to determine

necessary and sufficient conditions in order that H(R) contains a cycle and moreover, our goal

is to classify rings R such that H(R) is complemented. We need several lemmas to arrive at the

desired results. Let I(R) denote the set of all proper ideals of R and let I(R)∗ = I(R)\{(0)}.

Let A = {I ∈ I(R)∗|I ⊆M1, I 6⊆M2} and let B = {J ∈ I(R)∗|J ⊆M2, J 6⊆M1}. Observe that

M1 ∈ A and M2 ∈ B. �

Lemma 4.7. Let {M1,M2} denote the set of all maximal ideals of a ring R. Suppose that

for each i ∈ {1, 2}, Mi = ((0) :R ai) for some ai ∈ R\{0}. If M1 ∩M2 6= (0), then either

a1 ∈M1 ∩M2 or a2 ∈M1 ∩M2.

Proof. We know from [10, Lemma 3.6] that a1a2 = 0. Thus a1 ∈ M2 and a2 ∈ M1. Suppoe

that ai /∈M1 ∩M2 for each i ∈ {1, 2}. Then a1 ∈M2\M1 and a2 ∈M1\M2. Therefore, a1 + a2

is a unit in R. Let x ∈M1 ∩M2, x 6= 0. Note that (a1 + a2)x = 0 and this implies that x = 0.

This is a contradiction and hence we obtain the desired conclusion. �

Lemma 4.8. Let R,M1,M2 be as in the statement of Proposition 4.4. Suppose that M1∩M2 6=

(0). Let A, B be as in Remark 4.6. If |A| ≥ 2 and |B| ≥ 2, then the following hold:
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(i) H(R) is not complemented.

(ii) girth(H(R)) = 3.

Proof. If either M1 or M2 is not a B-prime of (0) in R, then we know from Corollary 2.4 that

no vertex of H(R) admits a complement in H(R) and moreover, we know from Proposition 2.5

that girth(H(R)) = 3. Hence in proving (i) and (ii) of this lemma, we may assume that both

M1 and M2 are B-primes of (0) in R. Let ai ∈ R\{0} be such that Mi = ((0) :R ai) for each

i ∈ {1, 2}.

(i) Since we are assuming that M1∩M2 6= (0), we know from Lemma 4.7 that either a1 ∈M1∩M2

or a2 ∈ M1 ∩M2. Without loss of generality, we may assume that a1 ∈ M1 ∩M2. We claim

that Ra1 does not admit a complement in H(R). Suppose that there exists a nonzero proper

ideal I of R such that Ra1 ⊥ I in H(R). From Ia1 6= (0), it follows that I 6⊆ M1. As I 6= R,

I ⊆ M2. Therefore, I ∈ B. By hypothesis, |B| ≥ 2. Let J ∈ B be such that J 6= I. Note that

J /∈ {Ra1, I}. As I 6⊆ M1 and J 6⊆ M1, it follows that IJ 6⊆ M1 and so IJ 6= (0). It is clear

that Ja1 6= (0). Hence J is adjacent to both Ra1 and I in H(R). This is in contradiction to

the assumption that Ra1 ⊥ I in H(R). Hence Ra1 does not admit a complement in H(R) and

so H(R) is not complemented.

(ii) As in (i), we may assume without loss of generality that a1 ∈ M1 ∩M2. Let J1, J2 be

any distinct members of B. It is clear that Ra1 /∈ {J1, J2}, Jka1 6= (0) for each k ∈ {1, 2}, and

J1J2 6= (0). Therefore, J1−Ra1−J2−J1 is a cycle of length 3 in H(R) and so girth(H(R)) = 3.

�

Lemma 4.9. Let {M1,M2} denote the set of all maximal ideals of a ring R. Suppose that

M1 ∩M2 6= (0). Let A, B be as in Remark 4.6. If |A∪B| ≥ 4, then the following hold:

(i) H(R) is not complemented.

(ii) girth(H(R)) = 3.

Proof. In view of Lemma 4.8, we may assume that either |A| = 1 or |B| = 1. Without loss of

generality, we may assume that |A| = 1. As we are assuming that A∪B contains at least four

elements, it follows that |B| ≥ 3.

(i) Observe that M2 ∈ B. Let J ∈ B be such that J 6= M2. We claim that J does not admit

a complement in H(R). Suppose that J admits a complement in H(R). Let I be a nonzero

proper ideal of R such that J ⊥ I in H(R). From JI 6= (0), it follows that M2I 6= (0). Note

that for any J1, J2 ∈ B, J1J2 6⊆ M1 and so J1J2 6= (0). Hence M2J 6= (0). It follows from the

assumption J ⊥ I that I = M2. Since |B| ≥ 3, there exists K ∈ B such that K /∈ {J,M2}. The
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fact that K is adjacent to both J and I = M2 in H(R) contradicts the assumption that J ⊥ I

in H(R). This proves the claim and so H(R) is not complemented.

(ii) Let J1, J2, J3 be any three distinct members of B. Note that J1 − J2 − J3 − J1 is a cycle of

length 3 in H(R) and therefore, girth(H(R)) = 3. �

Lemma 4.10. Let {M1,M2} denote the set of all maximal ideals of a ring R. If (M1 ∩M2)
2 6=

(0), then the following hold:

(i) H(R) is not complemented.

(ii) girth(H(R)) = 3.

Proof. We claim that M1 ∩M2 does not admit a complement in H(R). Suppose that there

exists a nonzero proper ideal I of R such that M1∩M2 ⊥ I in H(R). Observe that either I 6= M1

or I 6= M2. Without loss of generality, we may assume that I 6= M1. From (M1 ∩M2)I 6= (0)

and (M1∩M2)
2 6= (0), it follows that M1I 6= (0) and M1(M1∩M2) 6= (0). Hence M1 is adjacent

to both M1 ∩M2 and I in H(R). This contradicts the assumption that M1 ∩M2 ⊥ I in H(R).

This proves the claim and so H(R) is not complemented.

(ii) It follows from (M1 ∩M2)
2 6= (0) that M1 −M1 ∩M2 −M2 −M1 is a cycle of length 3 in

H(R). Hence girth(H(R)) = 3. �

Recall that a principal ideal ring T is called a special principal ideal ring (SPIR) if it has

a unique prime ideal. If M denotes the unique prime ideal of a SPIR T , then M is necessarily

nilpotent. If n ≥ 2 is least with the property that Mn = (0), then it follows from (iii)⇒ (i) of

[7, Proposition 8.8] that {M, . . . ,Mn−1} is the set of all nonzero proper ideals of T . If T is a

SPIR with M as its unique prime ideal, then we denote it using the notation (T,M) is a SPIR.

Lemma 4.11. Let T1 be a nonzero ring and let T2 be a ring with a prime ideal P such that

P 6= (0). Let T = T1 × T2. Then |I(T )∗| = 4 if and only if T1 is a field and (T2, P ) is a SPIR

with P 2 = (0).

Proof. Assume that T has exactly 4 nonzero proper ideals, that is |I(T )∗| = 4. In such a case,

it is clear that I(T )∗ = {(0)× P, (0)× T2, T1 × (0), T1 × P}. Let I be any nonzero ideal of T1.

Then I× (0) ∈ I(T )∗ and so I× (0) = T1× (0). This implies that I = T1. This proves that T1 is

a field. Let J be any nonzero proper ideal of T2. Then (0)×J ∈ I(T )∗ and so (0)×J = (0)×P .

Hence J = P . This shows that P is the only nonzero proper ideal of T2. Let p ∈ P, p 6= 0. Then

P = T2p. It is clear that P 2 ⊂ P and so P 2 = (0). Hence (T2, P ) is a SPIR with P 2 = (0).

Conversely, assume that T1 is a field and (T2, P ) is a SPIR with P 2 = (0). Then (0)
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is the only proper ideal of T1 and {(0), P} is the set of all proper ideals of T2. Therefore,

{(0)×P, (0)×T2, T1×(0), T1×P} is the set of all nonzero proper ideals of T . Hence |I(T )∗| = 4.

�

Let G = (V,E) be a connected graph with at least two vertices. If G does not contain any

triangle, then it is clear that G is complemented. For a ring R with exactly two maximal ideals,

if H(R) is complemented, then we verify in Theorem 4.12 that H(R) does not contain any

triangle and moreover, in Theorem 4.12, we classify rings R such that H(R) is complemented.

Theorem 4.12. Let {M1,M2} denote the set of all maximal ideals of a ring R. Then H(R) is

complemented if and only if R ∼= F × S as rings, where F is a field and (S,M) is a SPIR with

M 6= (0) but M2 = (0).

Proof. Assume that H(R) is complemented. Then it follows from Lemma 4.2 that M1 ∩M2 6=

(0). Let A and B be as in Remark 4.6. Note that M1 ∈ A and M2 ∈ B. It follows from Lemma

4.9(i) that |A ∪B| ≤ 3. Without loss of generality, we may assume that |A| = 1 and |B| ≤ 2.

Observe that M1,M
2
1 ∈ A and as |A| = 1, it follows that M1 = M2

1 . Moreover, we obtain from

Lemma 4.10(i) that (M1 ∩M2)
2 = (0). Hence M1M

2
2 = M2

1M
2
2 = (0). As M1 + M2 = R,

it follows that M1M2 = M1 ∩M2 and so M1M2 6= (0). Since M1M
2
2 = (0), we obtain that

M2 6= M2
2 . It follows from M2,M

2
2 ∈ B and |B| ≤ 2 that B = {M2,M

2
2 }. It can be shown as in

the proof of [21, Theorem 4.10] that if I is any nonzero ideal of R such that I ⊆M1 ∩M2, then

I = M1∩M2. As I(R)∗ = A ∪B ∪{M1∩M2}, we obtain that I(R)∗ = {M1,M2,M
2
2 ,M1∩M2}.

Since M1 +M2
2 = R and M1M

2
2 = (0), we obtain from the Chinese remainder theorem that

the mapping f : R → R/M1 × R/M2
2 defined by f(r) = (r + M1, r + M2

2 ) is an isomorphism

of rings. Let T = R/M1 × R/M2
2 . As R ∼= T as rings, it follows that |I(T )∗| = 4. Hence we

obtain from Lemma 4.11 that (R/M2
2 ,M2/M

2
2 ) is a SPIR. Let F = R/M1, S = R/M2

2 , and

M = M2/M
2
2 . Note that F is a field and (S,M) is a SPIR with M 6= (0) but M2 = (0) and

R ∼= F × S as rings.

Conversely, assume that R ∼= F × S as rings, where F is a field and (S,M) is a SPIR

with M 6= (0) but M2 = (0). Let T = F × S. Note that H(T ) is a graph on the vertex set

{(0)×M, (0)×S, F×(0), F×M}. Note that (0)×M ⊥ (0)×S and F×(0) ⊥ F×M in H(T ). This

proves that H(T ) is complemented. Indeed, H(T ) is the path (0)×M−(0)×S−F×M−F×(0).

As R ∼= T as rings, we obtain that H(R) is complemented. Moreover, observe that each vertex

of H(R) admits a unique complement in H(R). �

Let R,M1,M2 be as in the statement of Theorem 4.12. In Theorem 4.13, we determine
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necessary and sufficient conditions in order that H(R) contains a cycle.

Theorem 4.13. Let {M1,M2} denote the set of all maximal ideals of a ring R. Then the

following statements are equivalent:

(i) H(R) contains a cycle.

(ii) M1 ∩M2 6= (0) and moreover, R is not isomorphic to F ×S as rings, where F is a field and

(S,M) is a SPIR with M 6= (0) but M2 = (0).

(iii) girth(H(R)) = 3.

Proof. (i) ⇒ (ii) Assume that H(R) contains a cycle. Then it follows from Lemma 4.2 that

M1 ∩M2 6= (0). Suppose that R ∼= F ×S as rings, where F is a field and (S,M) is a SPIR with

M 6= (0) but M2 = (0). Let T = F × S. It is already noted in the proof of Theorem 4.12 that

H(T ) is the path (0)×M − (0)×S −F ×M −F × (0). Thus H(T ) does not contain any cycle

and so H(R) does not contain any cycle. This is a contradiction. This proves (i)⇒ (ii).

(ii)⇒ (iii) Let A and B be as in Remark 4.6. Observe that M1 ∈ A and M2 ∈ B. Suppose that

girth(H(R)) 6= 3. It follows from Lemma 4.9(ii) that |A ∪B| ≤ 3. Without loss of generality,

we may assume that |A| = 1 and |B| ≤ 2. Observe that as is remarked in the proof of Theorem

4.12, M1 = M2
1 . Moreover, we obtain from Lemma 4.10(ii) that (M1 ∩ M2)

2 = (0). Now

proceeding as in the proof of Theorem 4.12, we obtain that M2 6= M2
2 and R ∼= R/M1 ×R/M2

2

as rings with (R/M2
2 ,M2/M

2
2 ) is a SPIR. This contradicts (ii). This proves (ii)⇒ (iii).

(iii)⇒ (i) This is clear. �

Remark 4.14. Let {M1,M2} denote the set of all maximal ideals of a ring R. It is proved

in Theorem 4.12 that H(R) is complemented if and only if R ∼= F × S as rings, where F is a

field and (S,M) is a SPIR with M 6= (0) but M2 = (0). As each proper ideal of F × S is an

annihilating ideal, it follows that I(R)∗ = A(R)∗. Hence H(R) = (AG(R))c.

If M1 ∩M2 6= (0), then it follows from Theorem 4.13 that girth(H(R)) 6= 3 if and only if

R ∼= F × S as rings, where F is a field and (S,M) is a SPIR with M 6= (0) but M2 = (0). As

is remarked in the previous paragraph, we obtain that H(R) = (AG(R))c. �

We provide some examples to illustrate the results proved in this section.

Example 4.15.(i) Let R1 be a quasilocal ring with M1 as its unique maximal ideal such that

M1 is not a B-prime of (0) in R1 (one can consider R1 equals the quasilocal ring R as in

Example 3.6). Let R2 be a quasilocal ring with M2 as its unique maximal ideal such that M2

is a B-prime of (0) in R2 (one can consider R2 equals the local ring R as in Example 3.7). Let
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R = R1 ×R2. Note that {N1 = M1 ×R2, N2 = R1 ×M2} is the set of all maximal ideals of R

and N1 ∩N2 = M1×M2 6= (0)× (0). Since M1 is not a B-prime of (0) in R1, it follows that N1

is not a B-prime of the zero ideal in R. It follows from Propositions 4.4 and 4.5 that H(R) is

connected and moreover, diam(H(R)) = 2.

(ii) Let T = R × R, where R is the local ring considered in Example 3.7. It was noted in

Example 3.7 that the unique maximal M of R is a B-prime of the zero ideal in R. Observe that

{M1 = M×R,M2 = R×M} is the set of all maximal ideals of T , M1∩M2 = M×M 6= (0)×(0),

and moreover, as M is a B-prime of the zero ideal in R, it follows that both M1 and M2 are

B-primes of the zero ideal in T . Hence we obtain from Propositions 4.4 and 4.5 that H(T ) is

connected and moreover, diam(H(T )) = 3.

5 R has more than two maximal ideals

In this section, we consider rings R such that R has at least three maximal ideals and investigate

some properties of H(R).

Proposition 5.1. Let R be a ring which admits at least three maximal ideals. Then H(R) is

commected and diam(H(R)) ≤ 2. Moreover, if R is not an integral domain, then diam(H(R)) =

2.

Proof. Let I, J be distinct nonzero proper ideals of R. If IJ 6= (0), then I − J is a path of

length 1 in H(R) between I and J . Suppose that IJ = (0). Since R has at least three maximal

ideals, there exists a maximal ideal M of R such that M 6= ((0) :R I) and M 6= ((0) :R J).

Hence M 6⊆ ((0) :R I) ∪ ((0) :R J). Therefore, there exists m ∈ M such that Im 6= (0) and

Jm 6= (0). Note that I −Rm− J is a path of length 2 in H(R) between I and J . This proves

that H(R) is connected and diam(H(R)) ≤ 2.

Assume that R is not an integral domain. Hence there exists a, b ∈ R\{0} such that ab = 0.

Let I = Ra and J = Rb. Observe that IJ = (0). If I 6= J , then I and J are not adjacent in

H(R). Suppose that I = J . Then a2 = 0. Let M1,M2,M3 be any three distinct maximal ideals

of R. As a ∈M3 but M1 ∩M2 6⊆M3, it follows that M1 ∩M2 6= Ra. If (M1 ∩M2)a = (0), then

M1∩M2 and Ra are not adjacent in H(R). Suppose that (M1∩M2)a 6= (0). If (M1∩M2)a 6= Ra,

it follows from a2 = 0 that (M1 ∩ M2)a and Ra are not adjacent in H(R). Suppose that

(M1 ∩M2)a = Ra. Then a = xa for some x ∈ M1 ∩M2. This implies that (1− x)a = 0. Note

that 1− x is a nonzero nonunit of R. Since 1− x /∈M1 ∩M2 and a ∈M1 ∩M2, it follows that

R(1− x) 6= Ra. From (1− x)a = 0, we obtain that R(1− x) and Ra are not adjacent in H(R).
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Thus there exist nonzero proper ideals A,B of R such that A and B are not adjacent in H(R).

Therefore, diam(H(R)) ≥ 2 and so diam(H(R)) = 2. �

Proposition 5.2. Let R be a ring which admits at least three maximal ideals. Then any edge

of H(R) is an edge of a triangle in H(R). Moreover, girth(H(R)) = 3.

Proof. Let I − J be an edge of H(R). We consider the following cases:

Case(i). I + J ⊆M for some maximal ideal M of R

Since we are assuming that R has at least three maximal ideals, there exists a maximal ideal

N of R such that N 6= M and N 6= ((0) :R IJ). Hence N 6⊆ M ∪ ((0) :R IJ). Therefore, there

exists x ∈ N such that x /∈ M and IJx 6= (0). As x /∈ M , it is clear that Rx /∈ {I, J} and

moreover, note that I − J −Rx− I is a cycle of length 3 in H(R).

Case(ii) I + J = R

Let M1 be a maximal ideal of R such that I ⊆ M1. Let M2 be a maximal ideal of R such

that J ⊆M2. Since I +J = R, we obtain that M1 6= M2. Observe that I((0) :R I) = (0) and as

I 6⊆M2, it follows that ((0) :R I) ⊆M2. Similarly, as J 6⊆M1, we obtain from J((0) :R J) = (0)

that ((0) :R J) ⊆ M1. Let M3 be a maximal ideal of R such that M3 /∈ {M1,M2}. Since

M3 6⊆ M1 ∪ M2, it is clear that M3 /∈ {I, J} and M3I 6= (0) and M3J 6= (0). Therefore,

I − J −M3 − I is a cycle of length 3 in H(R).

Note that if M1,M2,M3 are three distinct maximal ideals of R, then M1 −M2 −M3 −M1

is a cycle of length 3 in H(R). Hence girth(H(R)) = 3. �

Corollary 5.3. Let R be a ring which admits at least three maximal ideals. Then no vertex

of H(R) admits a complement in H(R).

Proof. We know from Proposition 5.2 that each edge of H(R) is an edge of a triangle in H(R).

Therefore, no vertex of H(R) admits a complement in H(R). �

We provide some examples to illustrate the results proved in this section.

Example 5.4. (i) Let n ∈ N be such that n has at least three distinct prime divisors. Let

R = Z/nZ. As n has at least three distinct prime divisors, it follows that R has at least

three maximal ideals. It follows from Proposition 5.1 that H(R) is connected and moreover,

diam(H(R)) = 2. Furthermore, we obtain from Proposition 5.2 that any edge of H(R) is an

edge of a triangle in H(R) and hence we get that no vertex of H(R) admits a complement in

H(R).
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(ii) Let m ≥ 3 and let T = Rm be the direct product of m copies of R, where R is the quasilocal

ring considered in Example 3.6. Observe that T has exactly m ≥ 3 maximal ideals. Therefore,

we obtain from Propositions 5.1 and 5.2 that H(T ) is connected, diam(H(T )) = 2, and any

edge of H(T ) is an edge of a triangle in H(T ). Hence it follows that no vertex of H(T ) admits

a complement in H(T ). Let T1 = R[X] be the polynomial ring in one variable X over R. Then

as T1 has infinitely many maximal ideals, we obtain that H(T1) also has the same properties as

that of H(T ).

6 Concluding Remarks

Let R be a ring which is not a field. For the sake of easy reference and convenience, in this

Section, we mention the properties of H(R) that are proved in Sections 3,4 and 5 of this article.

Proposition 6.1. Let R be a ring such that R has at least two nonzero proper ideals. Then

H(R) is connected if and only if either (a), (b) or (c) holds:

(a) R is quasilocal with M as its unique maximal such that M is not a B-prime of (0) in R.

(b) R has exactly two maximal ideals M1,M2 with M1 ∩M2 6= (0).

(c) R has at least three maximal ideals.

Moreover, if (a) or (c) holds, then diam(H(R)) ≤ 2 and diam(H(R)) = 2 if and only if R is

not an integral domain. If (b) holds and if R is not an integral domain, then 2 ≤ diam(H(R)) ≤ 3

and diam(H(R)) = 3 if and only if both M1 and M2 are B-primes of (0) in R.

Proof. The proof of this proposition follows immediately from Propositon 3.1, Remark 3.2,

Propositions 4.4, 4.5, and 5.1. �

Proposition 6.2. Let R be a ring which is not a field. Then girth(H(R)) = 3 or ∞. Indeed,

the following hold:

(i) Suppose that R is quasilocal with M as its unique maximal ideal.

(a) If M is not a B-prime of (0) in R, then H(R) is a union of triangles and hence girth(H(R)) =

3.

(b) If M is a B-prime of (0) in R and if M is not principal, then H(R) is a union of triangles if

and only if M2 6= (0). Thus girth(H(R)) = 3 if M2 6= (0) and ∞ otherwise.

(c) If M is principal and is not nilpotent, then girth(H(R)) = 3.

(d) If M is principal and is nilpotent (that is, equivalently, (R,M) is a SPIR), then girth(H(R)) =

3 if M5 6= (0) and ∞ otherwise.

(ii) Suppose that R has exactly two maximal ideals M1,M2.
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(a) If M1 ∩M2 = (0), then girth(H(R)) =∞.

(b) If M1 ∩M2 6= (0), then girth(H(R)) = 3 if and only if R 6∼= F × S as rings, where F is a

field, and (S,M) is a SPIR with M 6= (0) but M2 = (0). Othewise, girth(H(R)) =∞.

(iii) If R has at least three maximal ideals, then H(R) is a union of triangles and hence

girth(H(R)) = 3.

Proof. (i) (a) This follows immediately from Lemma 2.3 and Proposition 2.5.

(b) We first verify that H(R) has at least one edge if and only if M2 6= (0). If M2 = (0), then

for any nonzero proper ideals I, J of R, IJ = (0). Hence H(R) has no edges. If M2 6= (0),

then Mm 6= (0) for some m ∈ M . By assumption M is not principal and so M 6= Rm. From

Mm 6= (0), it follows that there is an edge of H(R) joining M and Rm. The proof of (b) follows

immediately from Proposition 3.4 (v).

(c) Let M = Rm for some m ∈ M,m 6= (0). From mk 6= 0 for all k ∈ N, it follws that

Rmi 6= Rmj for all distinct i, j ∈ N. Note that Rm−Rm2 −Rm3 −Rm is a cycle of length 3

in H(R) and so girth(H(R)) = 3.

(d) Observe that if M is niplotent, then each nonzero proper ideal of R is an annihilating ideal

and hence H(R) = (AG(R))c. Therefore, (d) follows from [21, Lemma 6.3].

(ii) (a) It follows from Lemma 4.2 that girth(H(R)) =∞.

(b) This follows from Propsition 4.13.

(iii) This follows from Propsition 5.2. �

Proposition 6.3. Let R be a ring which is not a field. Then H(R) is complemented if and

only if R ∼= F ×S as rings, where F is a field and (S,M) is a SPIR with M 6= (0) but M2 = (0).

Proof. This follows from Propositions 3.3(i), 3.4(i), Theorem 4.12, and Corollary 5.3. �
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