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Abstract 

Phase transition in processes is an area of great technological importance in many fields. 

The characteristic feature of these processes is presence of time evolving unknown 

boundaries separating the phases. Latent heat release at the interface during the process is 

used to store the thermal energy. As one of the most important energy technologies to 

balance the utilization of electricity power, ice storage is developing rapidly in recent 

years.Present study concentrates on continuous change in the depths of the frozen and 

dehydrated regions, describing solidification phenomenon in a rectangular region which 

studies the dynamics of the moving interphases, using an independent heat balance 

equation.Quasi-stable approximations for temperature distribution lead to a semi-

analytical solution for the model. MATLAB software is used to solve the system of 

equations using the finite difference approximations. Numerical simulations are carried 

out varying surface temperature and initial freezing temperature on the dehydrated front, 

sublimation front, and also on the sublimation and frozen region temperatures.Results 

show that the effect of surface temperature is more than the effect of initial freezing 

temperature on the frozen zone. 
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1. Introduction 

Freezing is a phase change process in which liquid turns to solid. Freezing or melting problems are 

referred as moving boundary problems as there evolve boundaries separating the regions. These 

boundaries move with constant rate.The prototype of such problems is the Stefan problem, named 

after the early work of J. Stefan, who studied the melting of the polar ice cap around 1890. Moving 

boundary problems are mathematically particularly interesting and difficult because the changing time 
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history precludes the use of a similarity variable which is commonly emphasized in traditional Stefan 

problems to facilitate their solution. Establishing and maintaining of a constant front velocity is of 

crucial importance because constant flux rates are desirable in many modern technological 

procedures.Such a process covers a wide range of applications in which phase changes from solid, 

liquid or vapor states. Tracking the moving boundary at any time is an important part of the solution. 

Owing to the unknown location of the phase change interface and the nonlinear form of the thermal 

energy balance equation at the interface, analytical solutions are difficult to obtain except for a limited 

number of special cases. 

Thermal energy storage (TES) involves adding heat energy to a storage medium, and then removing it 

from that medium for use at some other time. This may involve storing thermal energy at high 

temperatures (heat storage) or at low temperatures (cool storage). An ice storage system, however, 

uses the latent capacity of water, associated with changing phase from a solid (ice) to a liquid (water), 

to store thermal energy. The most-common storage media used for cool thermal storage are ice and 

water. Water is an ideal choice for thermal storage systems because of its availability, high latent heat, 

non-flammability, and nontoxicity. A chilled-water storage systemuses sensible-heat capacity of  large 

volume of water to store thermal energy. Solidification and melting problems account for control 

based modelling. Solidification phenomena play a dominant role in the processes as well as product 

optimization. 

In this work, one-dimensional model for controlling the solidification rate of pure water by controlling 

the process parameters isdeveloped. A time dependent upper boundary condition is incorporated in 

the model at the surface of the upper boundary. Very limited research is reported with time varying 

boundary condition for the phase change processes.  

Solidification modeling with constant flux is reported in numerous papers and books. A wide research 

has been carried out in order to describe phenomena at microscale levels.  Due to difficulties in 

obtaining analytical solutions, various numerical techniques are often employed [1]. Gupta and Banik 

[2] have investigated approximate analytical methods that yield solutions of Stefan problems in 

simple closed forms. Time varying surface temperature condition is applied to solve the integral 

equation to obtain the position of the interface in melting or solidification of a semi-infinite 

medium[3]. 

Numerical techniques are specially known to have difficulties with time-dependent boundary 

conditions, and very fine mesh size and small time steps are often needed for accurate solutions. 

Because these are often computer intensive––only a few results for the Stefan problem with time 

dependent boundary conditions are available in the literature. A comparative study of various 

numerical methods for moving boundary problems discussed in the paper by Furzeland [4].Solutions 

of such Stefan problems include linear, exponentialand periodical variation of the surface temperature 

or the flux with time [4–6].Solutions reported in the literature using the finite difference methods for 

solving the moving boundary problems include the one-dimensional Stefan problem describing the 

evaporation processes [6,7]. 
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Changes in the soil depths due to the seasonal effects are studied in [8]. The variation of depths of the 

frozen and thawed soils is reduced to a moving boundary problem. The frozen and thawed depth 

moving boundaries are governed by the Stefan condition at the interface andto find the total ice 

content,is described by an independent mass balance equation. A periodic sinusoidal upper boundary 

condition for temperature is applied tostudy it’s on the frost/thaw depths and soil temperature, by 

varying soil thickness, ground surface temperature, annual amplitude of ground surface temperature 

and thermal conductivity.A moving boundary problem of solidification of Lava lake to find the 

positions of the two moving interfaces is discussed in the paper [9].  A convective heat- transfer from 

the surface of lava-lake into the atmosphere and a conductive heat transfer in to the country rock from 

base is taken into account. Semi-analytical solution is obtained using Fourier series method where in 

Fourier spectral approach is used to obtain the solution in the spatial domain. Modified finite 

difference scheme is used in the time domain. Time dependent boundary conditions are described at 

the contact with the country rock for the problem. Appropriate Fourier sine series expansion for the 

temperature distribution which satisfies the boundary conditions reduces the heat transfer equation in 

to a system of first order ODEs.To study shoreline movement, a shoreline model for the sedimentary 

ocean basin is developed by [10]. This is a Stefan problem for melting, in which latent heat is treated 

as a linear function of space and only the active liquid phase is taken into count. The main focus of 

this paper is to understand the surface processes interact with changes in sea level. This problem 

differs with the classic Stefan problem of melting by adopting a fixed flux and variable latent heat at 

the boundary x=0. 

Freezing with surface ice sublimation is studied to predict the effect of system parameters on the 

moving fronts and the temperature distributions to predict the feasible conditions for the coupled heat 

and mass transfer problem [11].Study is extended in paper [12], by introducing the mass transfer 

coefficient that describes the amount of vapor distribution from the surface of the dehydrated region 

to the atmosphere. The effect of mass transfer coefficient and the effect of the frozen mass volume are 

studied, to study their effect on the frozen and dehydrated region depths, in which sublimation is 

taken into account in the dehydrated region. One dimensional solidification in a rectangular 

encloserthat are used for ice storage units is discussed in the paper[13], that describes the effect of 

Stephen number on the solidification thickness and the velocity of the moving front. A quasi- stable 

temperature distribution is taken in to account by considering linear and quadratic approximations for 

the temperature distribution in the solid region. Extending the work reported by [13], by taking cubic 

and exponential approximations for the temperature distribution in the solid region [14].  Comparative 

study is made to report the best suitable approximation for the faster ice growth in rectangular ice 

storage systems. 

To control the solidification process by controlling the process parameters in their permissible limits 

is the main objective of the paper. The heat balance equations are formulated for each subdomain. 

This approach leads to one partial differential equation (PDE) for each subdomain (phase), with one 

boundary condition and one interface condition. The interface, or moving boundary, yields an ODE 
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for the position of the interface. Sublimated region along with the frozen region is taken into account 

to predict the vapor diffusion in to the air at the air-water interface. This approach is very important to 

decide the final quality of the product. A rectangular column of length ‘L’ is considered with water as 

the medium for the one dimensional phase change problem. The domain of interest is divided in to 

three regions, sublimated, frozen and unfrozen regions, defined by the phase change temperature. 

Sublimated and frozen regions are taken into account to describe the phenomenon. Each phase 

equations and suitable boundary conditions with interface condition explain the process and model 

equations are solved using finite difference method. A convective upper boundary condition at x=0 is 

considered as a function of time. Surface temperature and the initial freezing temperature are varied to 

study their effect on the solidification rate. This will help in the construction of ice storage systems to 

meet the energy requirement whenever is needed.   

2. Mathematical Modelling and Governing Equations 

Differential equations at the dehydrated region: 

2
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Differential equations at the frozen region: 

2
2 2

2 2 2 2
,

T T
C k

t x
  


  1 2( ) ( )s t x s t  ,        0t          (2) 

Free boundary conditions at the moving sublimation front 1( )x s t : 
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Free boundary conditions at the moving freezing front 2( )x s t : 

2 2( ( ), ) ,ifT s t t T 0t                                                                                                                (5) 
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( )subT t , ifT  are sublimation temperature and initial freezing temperatures. 

Convective boundary conditions at the fixed interface 0x  : 

1
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Initial conditions at 0t  : 
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for 0x                                                                                                                         (9) 
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T is temperature, t is time, x is the length of the column. 1( )s t , 2( )s t , 1( , )T x t , 2( , )T x t are the 

dehydrated and frozen depths and temperatures, respectively. 1L , 2L , 1m , 2m ,  1c , 2c , 1  ¸ 2 1k , 2k

are latent heat , mass per unit volume, volumetric heat capacity, density and thermal conductivity of 

dehydrated  and frozen regions, respectively. h , is the heat transfer coefficient of water. 

 

We assume temperature at the upper boundary to be: 

1(0, ) ( ) t
ifT t f t T e   

                                                                                                     
(10) 

By assuming quasi-steady approximation for 1T , 2T  
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Using initial and boundary conditions we evaluate the constants as follows 
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Performing, mathematical calculations we get the following first order simultaneous differential 

equations for the two moving fronts, 1( )s t , 2( )s t . 
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Choosing the following non-dimensional parameters as follows 
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Equations (17) and (18) are reduced to the following non-dimensional form 
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2 1(0) (0) 0s s                                                                                                                      (21) 

The quasi stable distribution for the temperature in the frozen and dehydrated regions reduces the 

PDE to system of ODE. Equation (19), (20) are simultaneous ordinary differential equations which 

are solved using finite difference approximations for the position of the moving fronts 1( )s t and 2( )s t . 

Using the initial conditions for the position of the moving fronts, model equations are solved and are 

simulated using MATLAB software to study the effect of the process parameters surrounding and 

initial freezing temperatures.  

Expressions for 1( , )T x t & 2( , )T x t are as follows 
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3. Results and Discussions 

Solidification phenomenon of water analyzed with different surrounding temperature for 10,000 

seconds at 1 atm pressure, where the initial temperature of water was considered to be 273K. The 

values of the physical properties and other parameters in frozen and unfrozen zones are same as in the 

referred journal [11]. We vary the surrounding temperature between 233sT   to 263sT   , initial 

freezing temperature in the range of  273ifT 
 
to 303ifT   and analyze the growth of dehydrated 

and frozen regions. 

 

Figure1: Influence of the surrounding temperature in the evolution of the freezing front, 

275 / ( )h W m K , 273.16ifT   
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Figure 1 shows that the decreasing of surrounding temperature affects ice thickness growth in frozen 

region. Lower is the surrounding temperature, higher is the growth rate. Ice thickness growth in the 

frozen region is linearly increasing for the increasing time period. The ice growth is more in the initial 

time period, because of the formation of ice crystals, rising to the sublimated interface and sticking 

there. In pure water, during freezing, the onset of freezing refers, the time during which crystal growth 

is occurring. Fast freezing rates like reducing the surrounding temperatures promote the formation of 

many small ice crystals during this period. Until all the freezable water has crystallizes, the partially 

frozen mixture will not cool further. Hence the growth of freezing front moves slowly during this time 

period. For certain period growth rate becomes almost nil and then increases at later times. Lower the 

value of the surrounding temperatures, faster the crystal formation, which in turn the movement of 

freezing front will be faster. The effect of initial freezing temperature on the freezing front is shown in 

the figure 2.  

 

Figure2: Influence of the initial freezing temperature in the evolution of the freezing front, 

275 / ( )h W m K , 263sT  . 

The order of magnitude of growth rate is very less for the variation of initial freezing temperature, 

when compared to the variation of the surrounding temperature. We notice that when the initial 

freezing temperature is at 273K, the growth rate is more compared to the values of ifT at lower 

temperatures.  

During freezing of the aqueous solution, a freeze-concentration process occurs as water freezes in the 

form of pure ice crystals. Hence the freezing temperature of the remaining solution drops. Some water 

remains at temperatures below the initial freezing point. Also, a large increase in the viscosity of the 

unfrozen phase occurs, thus decreasing the diffusion properties of the system and hindering 

crystallization. The study indicates that reducing initial freezing temperature will not improve the 

growth rate of the freezing front. So the effect of surrounding temperature is more dominant for the 

formation of ice quickly in the frozen region than the effect of the initial freezing temperature.   
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To predict the effect of surrounding temperature for ice thickness in the dehydrated region, the 

numerical solution has been run again with decreasing surrounding temperatures. For this part of 

modeling, results show that dehydrated region growth is lesser compare to frozen region growth for 

decreasing surrounding temperatures. The reason for this is that once the liquid region reaches
ifT , the 

convection effect disappears, and only conduction heat transfer takes place in the solid region. So that, 

conduction heat transfer plays a dominant role in the overall freezing process. Sublimation of water in 

the dehydrated region into the atmosphere in the form of vapor is dominated by convection heat 

transfer mechanism, this process is slow in the dehydrated region than in the frozen region. This 

hinders the growth of dehydrated region for the same surrounding temperature variations.  

Figure 3 shows that the decreasing surrounding temperature from 263K-233K decreases the growth 

rate and there is no significant variation in the growth of sublimation front for different
sT . Near the 

beginning of the freezing process, thickness of ice is very thin and has little impact on heat transfer. 

As freezing progresses, however, the ice becomes thicker and significantly impedes heat transfer. In 

order to maintain the same freeze rate with this degrading heat transfer, the temperature of the fluid 

must decrease near the end of the freezing process.Temperature variation during the freezing process 

has a close relationship with the rate of freezing, and it would affect the size of the ice crystal nuclei 

and the quality of the freezing process. In order to investigate the correlation between the initial 

freezing temperature and the water freezing process, the initial freezing temperature variation with 

respect to the process time was determined. Same trend can be observed from figure 4 for the 

variation of ifT from 270K -273K on the growth of sublimation region. Both 
sT  and 

ifT  variation has 

increased the sublimation front growth of same order of magnitude. So we can conclude that no 

significant effect is observed on the growth rate of dehydrated region for different initial freezing 

temperature and surrounding temperatures.  

 
Figure3: Influence of the surrounding temperature in the evolution of the sublimation front, 

275 / ( )h W m K , 273.16ifT  . 
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Figure4:  Influence of the initial freezing temperature in the evolution of the sublimation front, 

275 / ( )h W m K , 263sT  . 

 

 

Figure5: Influence of the surrounding temperature in the evolution of the dehydrated region 

Temperature, 275 / ( )h W m K , 273.16ifT  . 
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Figure6: Influence of the initial freezing temperature in the evolution of the dehydrated region 

Temperature, 275 / ( )h W m K , 263sT  . 

 

 

Figure7: Influence of the surrounding temperature in the evolution of the frozen region 

temperature, 275 / ( )h W m K , 273.16ifT  . 
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Figure8: Influence of the initial freezing temperature in the evolution of the frozen region 

temperature, 275 / ( )h W m K , 273.16ifT  . 

The effect of surrounding temperature ( sT ) and the effect of initial freezing temperature ( ifT ) on the 

dehydrated region temperature can be seen in figure 5 and in figure 6. Even though the growth rate of 

dehydrated region is almost same for different sT and ifT , temperature decrease in the dehydrated 

region  is more significant for variation in sT . Dehydrated region temperature is dominated by the 

variation of sT , than ifT . Temperature has decreased from a maximum of 273K to minimum of 253K 

for various sT . But the same has reduced from a maximum of 273K to minimum of 267K for various

ifT . Temperature in the dehydrated region is decreasing with decreasing sT and ifT .The same trend is 

observed even for frozen region temperature (figure 8).  The effect of  sT  is more on the frozen region 

temperature, than on the dehydrated region temperature. 

 
4. Conclusion 

The objective of this study was to conduct research on heat transfer in a specific ice storage system 

which utilizes rectangular ice containers and to develop models which can be used to simulate and 

evaluate the performance of the thermal energy storage system. The effects of process parameters like 

surrounding temperature and initial freezing temperature on the moving boundaries of sublimated and 

frozen regions were analyzed. The solution, is semi analytic, is sufficiently accurate for engineering 

design and prediction of ice accumulation. Results show that decreasing surroundingtemperature 

increases the growth of frozen region compared to dehydrated region. This study demonstrates the 

effectiveness of the surrounding and initial freezing temperaturesfor diagnosing and optimizing the 

process of water freezing to save energy.This can predict ice thickness for designing an ice storage 

tank./  
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