ON THE MULTIPLICATIVITY FACTOR AND QUADRATIVITY FACTOR OF A NONNEGATIVE FUNCTION ON A SEMIGROUP

PRAKASH A. DABHI* AND KASHYAP G. RACHCHH

Abstract. Let ω be a nonnegative function on a semigroup S. Then ω has a multiplicativity factor if there is $\mu > 0$ such that $\omega(st) \leq \mu \omega(s)\omega(t)$ for all $s,t \in S$; ω has quadrativity factor if there is $\lambda > 0$ such that $\omega(s^2) \leq \lambda \omega(s)^2$ for all $s \in S$. Given a nonnegative function ω on a semigroup S, we shall derive necessary and sufficient condition for ω to have a multiplicativity factor. We shall also do the same for quadrativity factor.

1. Introduction

The paper inspired by the papers [1, 2, 3, 4, 5] of R. Arens, M. Goldburg and W. A. J. Luxemburg. Let T be a normed space seminorm on a complex algebra A, i.e., $T(x) \geq 0$, $T(x + y) \leq T(x) + T(y)$ and $T(\alpha x) = |\alpha|T(x)$ for all $x, y \in A$ and $\alpha \in \mathbb{C}$. A seminorm T on an algebra A has a multiplicativity factor (M-factor) [3, 5] if there is $\mu > 0$ such that $T(xy) \leq \mu T(x)T(y)$ for all $x, y \in A$; T has a quadrativity factor (Q-factor) if there is $\lambda > 0$ such that $T(x^2) \leq \lambda T(x)^2$ for all $x \in A$. In [5] they derived necessary and sufficient condition for a seminorm to have a multiplicativity factor. In a subsequent paper [3] they derived necessary and sufficient condition for a seminorm to have a quadrativity factor. Let ω be a nonnegative function on a semigroup S. We shall derive necessary and sufficient for a nonnegative function on a semigroup to have a multiplicativity factor as well as a quadrativity factor.

2. Multiplicative factors

Definition 2.1. Let S be a semigroup, and let ω be a nonnegative function on S. Then

(i) ω has a multiplicativity factor (M-factor) if there is $\mu > 0$ such that $\omega(st) \leq \mu \omega(s)\omega(t)$ for all $s, t \in S$.

2010 Mathematics Subject Classification. 20M15, 20M99.

Key words and phrases. norm, semigroup, multiplicativity factor, quadrative factor.

Some part of the paper was done when the first author was there in the Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat. The author acknowledges UGC-SAP-DRS-III provided to the Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat. The authors would like to thank the referee for the careful reading of the manuscript.
(ii) ω has a quadrativity factor (Q-factor) if there is $\lambda > 0$ such that $\omega(s^2) \leq \lambda \omega(s)^2$ for all $s \in S$.

(iii) ω is a semiweight if $\omega(st) \leq \omega(s)\omega(t)$ for all $s \in S$.

(iv) ω is a weight if ω is a semiweight and $\omega(s) > 0$ for all $s \in S$.

It follows from above definition that if ω has a multiplicativity factor, then it has a quadrativity factor. Also, if ω is a weight, then ω is a semiweight. A semiweight ω on a semigroup S is proper if it not identically zero and $\omega(s) = 0$ for some $s \in S$.

Definition 2.2. Let S be a semigroup. A subset I is a semigroup ideal if either $I = \emptyset$ or $(IS \cup SI) \subset I$.

Definition 2.3. Let S be a semigroup, and let $\omega : S \to [0, \infty)$ be a map. Then the set $\{s \in S : \omega(s) = 0\}$ is the kernel of ω and it is denoted by $\ker \omega$.

The following characterizes seminorms having multiplicativity factor [5].

Theorem 2.4. [5, Theorem 2.4] Let A be an algebra, and let $T \neq 0$ be a seminorm on A. Then

(i) T has a multiplicativity factor if and only if $K = \ker T$ is an ideal in A and

$$
\mu_{\inf} = \sup \{T(xy) : x, y \in A, T(x) = 1 = T(y)\} < \infty.
$$

(ii) If T has a multiplicativity factor and $\mu_{\inf} > 0$, then μ is a multiplicativity factor if and only if $\mu \geq \mu_{\inf}$.

(iii) If T has a multiplicativity factor and $\mu_{\inf} = 0$, then μ is a multiplicativity factor if and only if $\mu > 0$.

We have the following analogous result.

Theorem 2.5. Let S be a semigroup, and let $\omega : S \to [0, \infty)$ be a map. Then the following statements hold.

(i) ω has a multiplicativity factor if and only if $\ker \omega$ is an ideal in S and

$$
\mu_{\inf} = \sup \left\{ \frac{\omega(st)}{\omega(s)\omega(t)} : x, y \in S, \omega(x) \neq 0 \neq \omega(y) \right\} < \infty.
$$

(ii) Suppose that ω has a multiplicativity factor. Then a constant $\mu > 0$ is a multiplicativity factor for ω if and only if $\mu \geq \mu_{\inf}$.
Proof. (i) Assume that \(\omega \) has a multiplicativity factor. Then there is \(k > 0 \) such that \(\omega(st) \leq k\omega(s)\omega(t) \) for all \(s, t \in S \). So, if \(s, t \in S, \omega(s) \neq 0 \) and \(\omega(t) \neq 0 \), then \(\frac{\omega(st)}{\omega(s)\omega(t)} \leq k \). Therefore
\[
\sup \left\{ \frac{\omega(st)}{\omega(s)\omega(t)} : s, t \in S, \omega(s) \neq 0, \omega(t) \neq 0 \right\} < \infty.
\]
If \(s \in S \) and \(t \in \ker \omega \), then \(\omega(st) \leq k\omega(s)\omega(t) \) implies that \(\omega(st) = 0 \), i.e., \(st \in \ker \omega \). Also, \(ts \in \ker \omega \). Therefore \(\ker \omega \) is an ideal in \(S \).

Conversely, assume that
\[
\mu_{\inf} = \sup \left\{ \frac{\omega(st)}{\omega(s)\omega(t)} : s, t \in S, \omega(s) \neq 0, \omega(t) \neq 0 \right\} < \infty
\]
and \(\ker \omega \) is an ideal in \(S \). Let \(s, t \in S \). If any of \(\omega(s) \) or \(\omega(t) \) is zero, then \(\omega(st) = 0 \) as \(\ker \omega \) is an ideal in \(S \). This gives \(\omega(st) \leq \mu_{\inf}\omega(s)\omega(t) \). Let \(\omega(s) \neq 0 \) and \(\omega(t) \neq 0 \). Then \(\frac{\omega(st)}{\omega(s)\omega(t)} \leq \mu_{\inf} \). Therefore \(\omega(st) \leq \mu_{\inf}\omega(s)\omega(t) \) for all \(s, t \in S \). So, \(\omega \) has a multiplicativity factor.

(ii) Let \(\mu \) be a multiplicativity factor for \(\omega \). Then \(\frac{\omega(st)}{\omega(s)\omega(t)} \leq \mu \) whenever \(s, t \in S, \omega(s) \neq 0 \) and \(\omega(t) \neq 0 \). But then \(\mu \geq \mu_{\inf} \).

Conversely, assume that \(\mu \geq \mu_{\inf} \). Let \(s, t \in S \). If any of \(\omega(s) \) and \(\omega(t) \) is zero, then \(\omega(st) = 0 \) as \(\ker \omega \) is an ideal in \(S \). So, \(\omega(st) \leq \mu\omega(s)\omega(t) \) in this case. Let \(\omega(s) \neq 0 \) and \(\omega(t) \neq 0 \). Then \(\omega(st) \leq \mu_{\inf}\omega(s)\omega(t) \leq \mu\omega(s)\omega(t) \). Thus \(\mu \) is a multiplicativity factor for \(\omega \).

\[\square\]

Corollary 2.6. Let \(S \) be a semigroup, and let \(\omega \) be a nonzero function on \(S \) such that \(\omega(s) \geq 0 \) for all \(s \in S \). Then \(\omega \) has a multiplicativity factor and
\[
\mu_{\inf} = \sup \left\{ \frac{\omega(st)}{\omega(s)\omega(t)} : s, t \in S, \omega(s) \neq 0, \omega(t) \neq 0 \right\} = 0 \text{ if and only if } st \in \ker \omega \text{ for all } s, t \in S.
\]

Corollary 2.7. Let \(S \) be a semigroup, and let \(\omega \) be a positive function on \(S \). Then the following statements hold.

(i) \(\omega \) has a multiplicativity factor if and only if \(\mu_{\inf} = \sup \left\{ \frac{\omega(st)}{\omega(s)\omega(t)} : s, t \in S \right\} < \infty \).

(ii) Suppose that \(\omega \) has a multiplicativity factor. Then a real number \(\mu \) is a multiplicativity factor for \(\omega \) if and only if \(\mu \geq \mu_{\inf} \).

Corollary 2.8. If \(S \) is a finite semigroup, and if \(\omega \) is positive function on \(S \), then \(\omega \) has a multiplicativity factor.

Proof. Since \(S \) is a finite set,
\[
\mu_{\inf} = \sup \left\{ \frac{\omega(st)}{\omega(s)\omega(t)} : s, t \in S \right\} < \infty.
\]
Therefore \(\omega \) has a multiplicativity factor.

\[\square\]
Lemma 2.9. Let S be a semigroup, and let ω be a nonnegative function on S. Suppose that ω has a multiplicativity factor. Then $\ker \omega$ is an ideal in S. If S is a topological semigroup and if ω is continuous, then $\ker \omega$ is a closed ideal in S.

Recall that a semigroup is simple if it has no nontrivial proper ideals.

Corollary 2.10.

(i) If S is a simple semigroup, then there are no multiplicative proper semiweights on S.

(ii) If S is a topological semigroup that has no proper closed ideals, then there are no continuous proper semiweights on S.

We recall the Rees quotient of a semigroup S by a semigroup ideal I. The relation \sim in S, defined by $s \sim t$ if either $s = t$ or both s and t are in I, is an equivalence relation in S. The equivalence classes under \sim are the singleton sets $\{s\}$ with $s \in S \setminus I$ and the set I. Since I is an ideal is S, the relation \sim is a congruence on S. The quotient semigroup S/I is the Rees factor semigroup of S modulo I [6].

Proposition 2.11. Let ω be a nonnegative function on a semigroup S such that $\ker \omega$ is an ideal in S. Define $\bar{\omega} : S/\ker \omega \to [0, \infty)$ by $\bar{\omega}([s]) = \omega(s)$ if $s \in S \setminus \ker \omega$ and $\bar{\omega}(\ker \omega) = 0$. Then ω has a multiplicativity factor if and only if $\bar{\omega}$ has a multiplicativity factor. In this case, $\mu_{\inf} = \bar{\mu}_{\inf}$.

Proof. Let $\mu > 0$ be a multiplicative factor for ω. Let $[s], [t] \in S/\ker \omega$. If any of $[s]$ and $[t]$ is $\ker \omega$, then $[st] = \ker \omega$ and hence both $\bar{\omega}([s][t])$ and $\bar{\omega}([s])\bar{\omega}([t])$ are zero. Now assume that none of $[s]$ and $[t]$ is $\ker \omega$. Then $\bar{\omega}([s][t]) = \bar{\omega}([st]) = \omega(st) \leq \mu \omega(s)\omega(t) = \mu \bar{\omega}([s])\bar{\omega}([t])$. Therefore μ is a multiplicativity factor for $\bar{\omega}$.

Let μ be a multiplicativity factor for $\bar{\omega}$. Let $s, t \in S$. If any of s and t is in $\ker \omega$, then $\omega(st) = 0$ and $\omega(s)\omega(t) = 0$. So, $\omega(st) \leq \mu \omega(s)\omega(t)$. Now assume that none of s and t is in $\ker \omega$. If $st \in \ker \omega$, then clearly $\omega(st) \leq \mu \omega(s)\omega(t)$ holds. Let $st \notin \ker \omega$. Then $\omega(st) = \bar{\omega}([st]) \leq \mu \bar{\omega}([s])\bar{\omega}([t]) = \mu \omega(s)\omega(t)$. Therefore ω has a multiplicativity factor.

It follows from above that μ is a multiplicativity factor for ω if and only if μ is a multiplicativity factor for $\bar{\omega}$. Thus $\mu_{\inf} = \bar{\mu}_{\inf}$. \qed

The following is analogous to [5, Theorem 1.2].

Theorem 2.12. Let ω_1 and ω_2 be nonnegative functions on S, and let ω_2 be submultiplicative, i.e., $\omega_2(st) \leq \omega_2(s)\omega_2(t)$ for all $s, t \in S$. Let $\tau \geq \sigma > 0$ be constants such that

$$\sigma \omega_2(s) \leq \omega_1(s) \leq \tau \omega_2(s) \quad (s \in S).$$
If $\mu \geq \frac{\tau}{\sigma^2}$, then μ is a multiplicativity factor for ω_1.

Proof. Let μ satisfy $\mu \geq \frac{\tau}{\sigma^2}$. Let $s, t \in S$. Then

$$\begin{align*}
\mu \omega_1(st) & \leq \mu \tau \omega_2(st) \\
& \leq \mu \tau \omega_2(s) \omega_2(t) \\
& \leq \mu \frac{\tau}{\sigma^2} \omega_1(s) \omega_1(t).
\end{align*}$$

Therefore ω_1 has a multiplicativity factor. \hfill \Box

Corollary 2.13. Let ω_1 and ω_2 be nonnegative functions on a semigroup S, and let ω_1 and ω_2 be equivalent, i.e., there are positive constants σ and τ such that $\tau \omega_1 \leq \omega_2 \leq \sigma \omega_1$. Then ω_1 has a multiplicative factor if and only if ω_2 has a multiplicative factor.

Let T be a seminorm on an algebra A, and let T have a multiplicativity factor. Given $c \in A$, define $T_c(x) = T(cx)$ for all $x \in A$. It is proved in [5, Theorem 3.1] that T_c has a multiplicativity factor if certain conditions are satisfied. We have a similar result in our case.

Theorem 2.14. Let S be a semigroup, $c \in S$, and let ω have multiplicative factors. Define $\omega_c(s) = \omega(cs)$ for all $s \in S$. Then ω_c has a multiplicative factor if any of the following conditions is satisfied.

(i) S has unit and c is invertible.

(ii) c is in the center of S and $c = c^2d$ for some $d \in S$.

Proof. (i) Let $s, t \in S$. Then

$$\begin{align*}
\omega_c(st) & = \omega(cst) \\
& = \omega(cs c^{-1} ct) \\
& \leq \mu \omega(cs) \omega(c^{-1} ct) \\
& \leq \mu^2 \omega_c(s) \omega(c^{-1}) \omega_c(t) \\
& = \mu^2 \omega(c^{-1}) \omega_c(s) \omega_c(t).
\end{align*}$$

Therefore ω_c has a multiplicative factor.

(ii) Let $s, t \in S$. Then

$$\begin{align*}
\omega_c(st) & = \omega(cst) \\
& = \omega(c^2 dst)
\end{align*}$$
\[\omega(d \text{csct}) \leq \mu^2 \omega(d) \omega(s) \omega(t) \]

Therefore \(\omega_c \) has a multiplicativity factor. \(\square \)

3. Quadrarive factors

We recall that a nonnegative map \(\omega \) on a semigroup \(S \) has a quadrative factor if there is \(\lambda > 0 \) such that \(\omega(s^2) \leq \lambda \omega(s)^2 \) for all \(s \in S \). The following theorem characterizes seminorms having quadrativity factor [3].

Theorem 3.1. [3, Theorem 1.2] Let \(T \) be a seminorm on an algebra \(A \). Then

(i) \(T \) has a quadrativity factor if and only if \(K = \ker T \) is closed under squaring (i.e., \(x^2 \in K \) if \(x \in K \)) and

\[\lambda_\text{inf} = \sup \{ T(x^2) : x \in A, T(x) \leq 1 \} < \infty. \]

(ii) If \(T \) has a quadravity factor and \(\lambda_\text{inf} > 0 \), then \(\lambda_\text{inf} \) is the best (least) quadravity factor for \(T \).

(iii) If \(T \) has a quadravity factor and \(\lambda_\text{inf} = 0 \), then \(\lambda \) is a quadrativity factor if and only if \(\lambda > 0 \).

The following is a similar result.

Theorem 3.2. Let \(S \) be a semigroup, and let \(\omega \) be a nonnegative function on \(S \). Then the following statements hold.

(i) \(\omega \) has a \(Q \)-factor if and only if \(\ker \omega \) is closed under squaring, i.e., \(s^2 \in \ker \omega \) whenever \(s \in S \), and \(\lambda_\text{inf} = \sup \{ \frac{\omega(s^2)}{\omega(s)^2} : s \in S, \omega(s) \neq 0 \} < \infty. \)

(ii) Assume that \(\omega \) has a \(Q \)-factor and \(\lambda_\text{inf} > 0 \). Then \(\lambda > 0 \) is a \(Q \)-factor for \(\omega \) if and only if \(\lambda \geq \lambda_\text{inf} \).

(iii) Assume that \(\omega \) has a \(Q \)-factor and \(\lambda_\text{inf} = 0 \). Then \(\lambda \) is a \(Q \)-factor if and only if \(\lambda > 0 \).

Proof. (i) Assume that \(\omega \) has a \(Q \)-factor. Then there is \(\lambda > 0 \) such that \(\omega(s^2) \leq \lambda \omega(s)^2 \) for all \(s \in S \). Let \(s \in \ker \omega \). Then \(\omega(s^2) \leq \lambda \omega(s)^2 = 0 \), i.e., \(s^2 \in \ker \omega \). Therefore \(\ker \omega \) is closed under squaring. If \(s \in S \setminus \ker \omega \), then \(\frac{\omega(s^2)}{\omega(s)^2} \leq \lambda \). Therefore \(\lambda_\text{inf} < \infty \).

Conversely, assume that \(\ker \omega \) is closed under squaring and \(\lambda_\text{inf} < \infty \). Take any \(\lambda > \lambda_\text{inf} \). If \(s \in S \setminus \ker \omega \), then \(\omega(s^2) \leq \lambda_\text{inf} \omega(s)^2 \leq \lambda \omega(s)^2 \). If \(s \in \ker \omega \), then clearly \(\omega(s^2) \leq \lambda \omega(s)^2 \) as \(\ker \omega \).
is closed under squaring. Thus ω has a Q-factor.

(ii) Let $\lambda \geq \lambda_{\text{inf}}$. By (i), $\ker \omega$ is closed under squaring. So, if $s \in \ker \omega$, then $\omega(s^2) \leq \lambda \omega(s)^2$. Let $s \in S \setminus \ker \omega$. Then $\omega(s^2) \leq \lambda_{\text{inf}} \omega(s)^2 \leq \lambda \omega(s)^2$. Thus λ is a Q-factor for ω.

Conversely, assume that λ is a Q-factor for ω. Then $\frac{\omega(s^2)}{\omega(s)^2} \leq \lambda$ for all $s \in S \setminus \ker \omega$. Therefore $\lambda_{\text{inf}} \leq \lambda$.

(iii) follows from (ii) \hfill \Box

Lemma 3.3. Let S be a semigroup, let c be in the centre of S and $c = c^2$. If a nonnegative function ω on S has a Q-factor, then the map $\omega_c(s) = \omega(cs)$ ($s \in S$) has a Q-factor.

Proof. Let $\lambda > 0$ be a Q-factor for ω. Let $s \in S$. Then

$$\omega_c(s^2) = \omega(cs^2) = \omega(c^2 s^2) = \omega((cs)^2) \leq \lambda \omega(cs)^2 = \lambda \omega_c(s)^2.$$

Therefore ω_c has a Q-factor. \hfill \Box

Lemma 3.4. Let ω_1 and ω_2 be nonnegative functions on S, and let $\omega_2(s^2) \leq \omega_2(s)^2$ for all $s \in S$. Let $\tau \geq \sigma > 0$ be constants such that

$$\sigma \omega_2(s) \leq \omega_1(s) \leq \tau \omega_2(s) \quad (s \in S).$$

If $\lambda \geq \frac{\tau}{\sigma}$, then λ is a quadrativity factor for ω_1.

Proof. Let λ satisfy $\lambda \geq \frac{\tau}{\sigma}$. Let $s \in S$. Then

$$\lambda \omega_1(s^2) \leq \lambda \tau \omega_2(s^2) \leq \lambda \tau \omega_2(s)^2 \leq \lambda \frac{\tau}{\sigma} \omega_1(s)^2.$$

This gives $\omega_1(s^2) \leq \frac{\tau}{\sigma} \omega_1(s)^2$. Therefore ω_1 has a Q factor. \hfill \Box

Corollary 3.5. Let ω_1 and ω_2 be nonnegative functions on a semigroup S, and let ω_1 and ω_2 be equivalent. Then ω_1 has a Q-factor if and only if ω_2 has a Q-factor.

Proof. Since ω_1 and ω_2 are equivalent, there are positive constants σ and τ such that $\tau \omega_1(s) \leq \omega_2(s) \leq \sigma \omega_1(s)$ for all $s \in S$. Assume that ω_1 has a Q-factor, say, λ. Let $s \in S$. Then $\omega_2(s^2) \leq \sigma \omega_1(s^2) \leq \sigma \lambda \omega_1(s)^2 \leq \frac{\tau}{\sigma} \omega_2(s)^2$. Therefore ω_2 has a Q-factor. If ω_2 has a Q-factor, then it follows from above arguments that ω_1 has a Q-factor. \hfill \Box
REFERENCES

*Department of Mathematics, Sardar Patel University, Vallabhi Vidyanagar - 388120, Gujarat, India.

Current address: Department of Mathematics, Institute of Infrastructure Technology Research and Management (IITRAM), Maninagar, Ahmedabad - 380026, Gujarat, India.

E-mail address: lightatinfinite@gmail.com

Department of Mathematics, Sardar Patel University, Vallabhi Vidyanagar - 388120, Gujarat, India.

E-mail address: kashyaprachchh17@gmail.com